El control de estabilidad (salvo que se desconecte manualmente) está activado permanentemente. En él, un microordenador evalúa las señales de los sensores y comprueba 25 veces por segundo si las maniobras del conductor al volante se corresponden con el movimiento real del vehículo. Si éste se mueve en una dirección diferente a la deseada, el ordenador detecta esta situación crítica y reacciona de inmediato, independientemente del conductor. El ESC utiliza el sistema de frenos, decelerando independientemente cada rueda para mantener estable la trayectoria del vehículo. Con este frenado selectivo el control de estabilidad genera la necesaria fuerza opuesta, de manera que el vehiculo obedece al conductor. El sistema también puede intervenir en el motor para reducir la potencia del mismo. De esta manera, siempre dentro de los límites de la física, el vehículo mantiene con seguridad la trayectoria deseada.
domingo, 2 de junio de 2013
SENSOR ABS (sistema antibloqueo de frenos)
El ABS funciona en conjunto con el sistema de frenado tradicional. Consiste en una bomba que se incorpora a los circuitos del líquido de freno y en unos detectores que controlan las revoluciones de las ruedas. Si en una frenada brusca una o varias ruedas reducen repentinamente sus revoluciones, el ABS lo detecta e interpreta que las ruedas están a punto de quedar bloqueadas sin que el vehículo se haya detenido. Esto quiere decir que el vehículo comenzará a deslizarse sobre el suelo sin control, sin reaccionar a los movimientos del volante. Para que esto no ocurra, los sensores envían una señal al Módulo de Control del sistema ABS, el cual reduce la presión realizada sobre los frenos, sin que intervenga en ello el conductor. Cuando la situación se ha normalizado y las ruedas giran de nuevo correctamente, el sistema permite que la presión sobre los frenos vuelva a actuar con toda la intensidad. El ABS controla nuevamente el giro de las ruedas y actúa otra vez si éstas están a punto de bloquearse por la fuerza del freno. En el caso de que este sistema intervenga, el procedimiento se repite de forma muy rápida, unas 50 a 100 veces por segundo, lo que se traduce en que el conductor percibe una vibración en el pedal del freno.
La finalidad principal del equipo de frenos de un vehículo es reducir la velocidad a la que se desplaza y, por lo tanto, hacer que las ruedas dejen de dar vueltas. Sin embargo, debido a la inercia es posible que nuestro coche siga en movimiento aunque las ruedas estén completamente paradas. Esto tiene un inconveniente muy importante y es que si las ruedas no giran, pero el coche sigue moviéndose, lo hace sin control sobre la trayectoria que queramos realizar.
http://www.youtube.com/watch?feature=player_embedded&v=ZSqGPyWroes#!
La finalidad principal del equipo de frenos de un vehículo es reducir la velocidad a la que se desplaza y, por lo tanto, hacer que las ruedas dejen de dar vueltas. Sin embargo, debido a la inercia es posible que nuestro coche siga en movimiento aunque las ruedas estén completamente paradas. Esto tiene un inconveniente muy importante y es que si las ruedas no giran, pero el coche sigue moviéndose, lo hace sin control sobre la trayectoria que queramos realizar.
http://www.youtube.com/watch?feature=player_embedded&v=ZSqGPyWroes#!
SENSOR DE "VSS" (sensor de velocidad del vehiculo)
La ECM usa la señal del sensor de velocidad del vehículo (VSS) para modificar las funciones del motor y poner en marcha rutinas de diagnóstico. La señal de VSS se origina por un sensor que mide la velocidad de salida de la transmisión / transaxle o velocidad de las ruedas. Diferentes tipos de sensores se han utilizado en función de los modelos y aplicaciones.
En algunos vehículos, la señal del sensor de velocidad del vehículo es procesada en el medidor combinado y luego enviada al ECM.
En algunos vehículos con sistema de frenos anti-bloqueo (ABS), la computadora del ABS procesa la señal del sensor de velocidad de la rueda y la envía al medidor combinado y luego a la ECM. Se debe consultar la EWD para confirmar el tipo de sistema que tiene el vehículo en el que se está trabajando.
Tipo Bobina Pick-Up (de reluctancia variable)
Este tipo de VSS opera con el principio de reluctancia variable y se utiliza para medir la velocidad de salida de la transmisión / transeje o la velocidad de las ruedas en función del tipo de sistema.
Tipo de Resistencia elemento magnético (MRE)
El tipo MIRE es impulsado por el eje de salida en una transmisión de engranajes o de salida en un eje transversal. Este sensor utiliza un anillo magnético que gira cuando el eje de salida está cambiando. Los sensores MIRE detecta los cambios en el campo magnético. Esta señal es condicionada en el sensor de velocidad VSS a una onda digital. Esta señal digital es recibida por el medidor combinado, y luego se envían a la ECM. El MIRE requiere una fuente de alimentación externa para funcionar.
SENSOR DE DETONACION
El sensor de detonación detecta la detonación del motor y envía una señal de tensión a la ECM. La ECM usa la señal del sensor de detonación para controlar la sincronización.
La detonación del motor se produce dentro de un rango de frecuencias. El sensor de detonación, que se encuentra en el bloque del motor, la cabeza o el múltiple de admisión, es ajustado para detectar dicha frecuencia.
Un sensor de pistoneo o detonación es un dispositivo piezo-eléctrico pequeño, que junto con el PCM, identifica estas detonaciones. El PCM ante esta circunstancia retrasara el encendido para evitar daños al motor.
SENSOR IAC (Idle Air Control)
La válvula IAC (Idle Air Control) se encarga de proporcionar el aire necesario para el funcionamiento en marcha lenta. Estando el motor en marcha lenta, la cantidad de aire que pasa por la mariposa de aceleración es muy poco y la válvula IAC proporciona el resto del aire por un conducto. |
Tiene en su interior un motor reversible con 2 embobinados para que el rotor pueda girar en los 2 sentidos. |
El rotor tiene rosca en su interior y el vástago de la válvula se enrosca en el rotor. Si el rotor gira en un sentido, el vástago saldrá cerrando el flujo del aire y si gira en el otro sentido, el vástago se retraerá aumentando el flujo. |
Tiene 4 terminales conectadas al ECM para que éste controle el motor de la IAC dependiendo de la cantidad de aire que necesite para la marcha lenta aumentando o restringiendo el flujo del aire. Los embobinados del motor de la IACno deben tener menos de 20 Ohmios, ya que si tienen menos se deteriora el ECM. |
Limpieza y calibración de la válvula IAC |
Cuando limpie la válvula IAC, realice ésta operación como se muestra en el dibujo anterior, no la limpie con la punta hacia arriba porque si la voltea le entra líquido y se deteriora en poco tiempo. También mida la altura máxima y ajústela aplicando presión con el dedo en la punta en caso que tenga mayor altura. |
Si la altura es menor, no hay problema. http://www.youtube.com/watch?v=v68i0S9eUR0 |
SENSOR IAT (Sensor de Temperatura del Aire de Admisión)
El IAT detecta la temperatura del aire entrante. En los vehículos equipados con un sensor MAP, el IAT se encuentra en un paso de aire de admisión. En los vehículos con sensor de masa de aire, el IAT es parte del sensor MAF. El IAT está conectado a la terminal de THA en la ECM. El IAT se utiliza para la detección de la temperatura ambiente en un arranque en frío y la temperatura del aire de admisión mientras el motor calienta el aire entrante.
DIAGNÓSTICO DEL SENSOR DE TEMPERATURA
A los sensores de temperatura se les prueba:
• circuitos abiertos.
• cortos circuitos.
• tensión.
• resistencia del sensor.
Un circuito abierto (alta resistencia) leerá la temperatura más fría posible. Un circuito corto (baja resistencia) leerá la temperatura más alta posible. El propósito procedimiento diagnóstico es aislar e identificar el sensor de temperatura del circuito y el ECM.
Alta resistencia en el circuito de temperatura hará que la ECM detecte una temperatura más fría de lo que realmente es. Por ejemplo, conforme el motor se va calentando, la resistencia de la ECT disminuye, pero una resistencia no deseada adicional en el circuito producirá una caída de tensión mayor. Lo más probable es que esto se note cuando el motor alcance su temperatura de operación normal. Tenga en cuenta que en el extremo superior de la escala de temperatura / resistencia, la resistencia de la ECT cambia muy poco.
SENSOR TPS (Throttle Position Sensor, o sensor de posición de mariposa)
Está situado sobre la mariposa, y en algunos casos del sistema monopunto esta en el cuerpo (el cuerpo de la mariposa es llamado también como unidad central de inyección).
Su función radica en registrar la posicion de la mariposa envíando la información hacia la unidad de control. El tipo de sensor de mariposa más extendido en su uso es el denominado potenciómetro. |
Consiste en una resistencia variable lineal alimentada con una tensión de 5 volts que varia la resistencia proporcionalmente con respecto al efecto causado por esa señal.
Si no ejercemos ninguna acción sobre la mariposa entonces la señal estaría en 0 volts, con una acción total sobre ésta la señal sera del máximo de la tensión, por ejemplo 4.6 volts, con una aceleración media la tensión sería proporcional con respecto a la maxima, es decir 2.3 volts.
Generalmente tiene 3 terminales de conexión, o 4 cables si incluyen un switch destinado a la marcha lenta.
Fallas frecuentes
Un problema causado por un TPS en mal estado es la pérdida del control de marcha lenta, quedando el motor acelerado o regulando en un régimen incorrectos.
La causa de esto es una modificación sufrida en la resistencia del TPS por efecto del calor producido por el motor, produciendo cambios violentos en el voltaje mínimo y haciendo que la unidad de control no reconozca la marcha lenta adecuadamente.
SENSOR MAF (sensor de flujo de aire)
El sensor de maza de flujo de aire convierte la cantidad de aire qe entra al motor en una señal de voltaje. El ECM tiene que saber el volumen de entrada de aire para calcular la carga del motor. Esto es necesario para determinar la cantidad de combustible a inyectar, cuando encender el cilindro, y cuando hacer el cambio de marcha en la transmisión. El sensor de flujo de aire se encuentra directamente en el flujo de aire de admisión, entre el filtro de aire y el cuerpo de aceleración donde puede medir el aire de entrada.
Hay diferentes tipos de sensores de masa de flujo de aire. El medidor de paletas y el de vortexr Karmen son dos de los tipos más antiguos de sensores de flujo de aire y se pueden identificar por su forma. El tipo más reciente, y más común, es el flujo de masa de aire (MAF) del sensor.
Sensor MAF – Tipo Alambre Caliente
Los principales componentes del sensor MAF son un termistor, un alambre de platino caliente, y un circuito de control electrónico.
El termistor mide la temperatura del aire entrante. El hilo caliente se mantiene en una temperatura constante en relación con el termistor del circuito de control electrónico. Un aumento del flujo de aire hace que el hilo caliente pierda calor más rápidamente y los circuitos de control electrónico lo compensan enviando una corriente mayor a través del hilo. El circuito de control electrónico al mismo tiempo mide el flujo de corriente y emite una señal de tensión (VG) en proporción a el flujo de corriente.
Este tipo de sensor MAF por lo tanto tiene un sensor de temperatura del aire de admisión (IAT), como parte de la carcaza.
COMO FUNCIONA LOS SENSORES TIPO "ÓPTICO"
Para que podamos darnos una idea de lo que nos referimos, debemos decir que un buen ejemplo de sensor óptico es el de los mouse de computadora, los cuales mueven el cursor según el movimiento que le indicamos realizar. No obstante es importante tener en cuenta que los sensores ópticos también pueden utilizarse para leer y detectar información, tal como al velocidad de un auto que viene por la carretera y si un billete grande esta marcado o bien, es falso.
SENSORES DE TIPO HALL (sonda hall)
Los sensores de efecto Hall sirven para la medición de campos magnéticos o corrientes o para la determinación de la posición.
Si fluye corriente por un sensor Hall y se aproxima a un campo magnético que fluye en dirección vertical al sensor, entonces el sensor crea un voltaje saliente proporcional al producto de la fuerza del campo magnético y de la corriente. Si se conoce el valor de la corriente, entonces se puede calcular la fuerza del campo magnético; si se crea el campo magnético por medio de corriente que circula por una bobina o un conductor, entonces se puede medir el valor de la corriente en el conductor o bobina.
Mediciones de campos magnéticos (Densidad de flujo magnético)Mediciones de corriente sin potencial (Sensor de corriente)
Emisor de señales sin contacto
Aparatos de medida del espesor de materiales
SENSOR DE POSICIÓN DE ARBOL DE LEVAS (CMP)
El CMP indica a la Centralita la posición del árbol de levas para que determine la secuencia adecuada de inyección
El sensor de árbol de levas inductivo provee al PCM la información que le permite
identificar el cilindro numero 1. Es utilizado en los sistemas de inyección secuencial.
Es llamado también sensor de fase. Consta de una bobina arrollada sobre un núcleo
de imán. Este sensor esta enfrentado a un camón del árbol de levas y produce una
señal cada dos vueltas de cigüeñal.
http://www.youtube.com/watch?v=H9rQnunWNZA
SENSOR DE POSICIÓN DE CIGUEÑAL(CKP)
El sensor CKP de este tipo también puede ser óptico, genera una señal digital en cojunto con la tensón PULL-UP de la computadora.
Cada aro o plato con ranuras o dientes los cuales estan posicionados a X grados según el cilindraje del vehículo.Por cada punto que pase por el sensor se genera una inversión de polaridad en la tensión Hall lo que ocaciona que la tensión de pull-up proveniente de la computadora interprete ese dato como cero.
La PCM utiliza esta información para determinar la secuencia y tiempo de ignición.
Cada fabricante tiene su función determinada y son importantes para la perfecta sincronización en las explosiones del vehículo.
Sensor CKP generador de Frecuencia
Este sensor produce de acuerdo a los dientes, un ciclo por diente, el número de ciclos dependera del número de dientes , cuando el frente del sensor se localiza en el punto métlico en la terminal de iman permanente se eleva el voltaje y en el terminal de conector electrico baja.
Cuando el frente del sensor se localiza en un diente sucede lo contrario, en el terminal de iman permanente el voltaje baja y en el terminal de conector electrico se eleva.
Este sensor reporta el número y secuencias de
las ranuras hechas en el plato del convertidor de
torsión para que junto con el dato del sensor del
árbol del levas (CMP), la computadora ubique
la posición del cilindro no. 1, y la generación de
chispa e inyección pueda ser sincronizada con el
motor. Este sensor está localizado atrás del motor
del lado derecho.
http://www.youtube.com/watch?v=7Y7jWHFUdbg
PARA QUE FUNCIONA EL NITRO EN EL VEHICULO?
En un gas que se compone de nitrogeno y oxígenos, el nitrogeno es un gas inerte.
Cuando el gas entra en el pistón y alcanza una temperatura suficiente entre (57°f) se divide y suelta el oxigeno, este oxigeno extra permite quemar mas combustible, en una enorme ganancia en la potencia por eso el oxido nitroso se inyecta con la gasolina para poder mantenerla nivelada dentro del motor.
LAS FOTORESISTENCIAS
En la fotoresistencia tiene cuya resistencia disminuye con el aumento de intensidad de luz incidente. Puede también ser llamado fotorresistor, fotoconductor, célula fotoeléctrica o resistor dependiente de la luz, cuya siglas, LDR, se originan de su nombre en inglés light-dependent resistor. Su cuerpo está formado por una célula o celda y dos patillas. En la siguiente imagen se muestra su símbolo eléctrico.
El valor de resistencia eléctrica de un LDR es bajo cuando hay luz incidiendo en él (puede descender hasta 50 ohms) y muy alto cuando está a oscuras (varios megaohmios).
DIODO SCR (Silicon Controlled Rectifier: rectificador controlado de silicio
Es un tipo de tiristor formado por cuatro capas de material semiconductor con estructura PNPN o bien NPNP. El nombre proviene de la unión de Tiratrón (tyratron) y Transistor.
Un SCR posee tres conexiones: ánodo, cátodo y gate (puerta). La puerta es la encargada de controlar el paso de corriente entre el ánodo y el cátodo. Funciona básicamente como un diodo rectificadorcontrolado, permitiendo circular la corriente en un solo sentido. Mientras no se aplique ninguna tensión en la puerta del SCR no se inicia la conducción y en el instante en que se aplique dicha tensión, el tiristor comienza a conducir. Trabajando en corriente alterna el SCR se desexcita en cada alternancia o semiciclo. Trabajando en corriente continua, se necesita un circuito de bloqueo forzado, o bien interrumpir el circuito
.
QUE ES UN POTENCIÓMETRO?
Un potenciómetro es un resistor cuyo valor de resistencia es variable. De esta manera, indirectamente, se puede controlar la intensidad de corriente que fluye por un circuito si se conecta en paralelo, o la diferencia de potencial al conectarlo en serie.
CONEXION TIPO PUENTE
Este circuito perimite que a un motor electrico ir en ambos sentidos es decir que tiene 2 circuitos en serie y 1 en paralelo, en medio de las conexiones que serian una enmedio hay conexiones entre la otra en paralelos es decir que entre la relacion de una de ellas seria R1, R4 Y R2, R3 para que esto nos ayude a la resistencia, en el puente se encontraria un estado neutro es decir no pasaria nada de coriente.
MEZCLA ADECUADA DE AIRE-COMBUSTIBLE (para el auntomovil)
Para este tipo de mezcla primero se calientan debido al incremento de precion(gases que se calientan cuando se comprimen) evaporando la gasolina y la mezcla intimadamente con el aire la cantdad exacta se le llama relacion estequiometrica
Mezclas para Motor
La relación entre aire y combustible varía constantemente en un motor de pistones. Esta proporción se cálcula de acuerdo al peso.Proporción de Mezcla = | aire atmosférico en gramos consumo de gasolina en gramos |
Mezcla Estequiométrica
En condiciones normales, la combustión total de 1 gramo de gasolina se consigue con 14.8 gramos de aire. Sin embargo, los motores de pistón no son capaces de crear las condiciones de homogeneidad entre aire y gasolina para quemarla el ciento por ciento. Para contrarrestar esta deficiencia los sistemas de alimentación están diseñados de manera que la mezcla contenga un 10 por ciento más de aire por gramo de gasolina. Esta proporción se denomina "mezcla económica" y se forma con 16 partes de aire por cada parte de combustible.
SENSOR DE OXIGENO (ZONDA LAMDA)
Es un sensor que está situado en el conducto de escape, inmediatamente antes del catalizador, de forma que puede medir la concentración de oxígeno en los gases de escape antes de que sufran alguna alteración. La medida del oxígeno es representativa del grado de riqueza de la mezcla, magnitud que la sonda transforma en un valor de tensión y que comunica a la unidad de control del motor.trabajan midiendo constantemente el contenido de oxígeno en el interior del colector de escape y compararlo con el aire fuera del motor. Si esta comparación se muestra poco o nada de oxígeno en el colector de escape, se genera una corriente. Esta corriente se envía a la computadora de inyección de combustible, donde se recibe y se basa en la cantidad de corriente recibida, el equipo de inyección de combustible hace los ajustes necesarios para cambiar el combustible total de la mezcla de aire del motor. Cuando el sensor de oxígeno mide la mezcla correcta, la corriente baja y envía la señal adecuada para que la computadora deje de ajustar la mezcla. Este es un intercambio de señales entre el sensor y la computadora que nunca se detiene, y está constantemente haciendo ajustes en función de las necesidades del motor. Cuando el sensor falla, deja de enviar voltaje a la computadora de inyección de combustible, y normalmente la computadora interpreta esto como "la señal esta muy baja, así que es mejor enriquecer este motor tanto como podemos", provocando que el motor use bastante combustible.
RECTIFICADOR DE ONDA COMPLETA
Es un circuito empleado para convertir una señal de corriente alterna de entrada (Vi) en corriente continua de salida (Vo) pulsante. A diferencia del rectificador de media onda, en este caso, la parte negativa de la señal se convierte en positiva o bien la parte positiva de la señal se convertirá en negativa, según se necesite una señal positiva o negativa de corriente continua.
LOS TERMISTORES
Es un sensor resistivo de temperatura. Su funcionamiento se basa en la variación de la resistividad que presenta un semiconductor con la temperatura. El término termistor proviene de Thermally Sensitive Resistor. Existen dos tipos de termistor:
- NTC (Negative Temperature Coefficient) – coeficiente de temperatura negativo
- PTC (Positive Temperature Coefficient) – coeficiente de temperatura positivo
El funcionamiento se basa en la variación de la resistencia del semiconductor debido al cambio de la temperatura ambiente, creando una variación en la concentración de portadores. Para los termistores NTC, al aumentar la temperatura, aumentará también la concentración de portadores, por lo que la resistencia será menor, de ahí que el coeficiente sea negativo. Para los termistores PTC, en el caso de un semiconductor con un dopado muy intenso, éste adquirirá propiedades metálicas, tomando un coeficiente positivo en un margen de temperatura limitado.
QUE ES TERMOPAR?
Es un transductor formado por la unión de dos metales distintos que produce un voltaje, que es función de la diferencia de temperatura entre uno de los extremos denominado "punto caliente" o unión caliente o de medida y el otro denominado "punto frío" o unión fría o de referencia.
Son capaces de medir un amplio rango de temperaturas. Su principal limitación es la exactitud ya que los errores del sistema inferiores a un grado Celsius son difíciles de obtener.
Son capaces de medir un amplio rango de temperaturas. Su principal limitación es la exactitud ya que los errores del sistema inferiores a un grado Celsius son difíciles de obtener.
QUE ES UN DIODO "ZENER"
Se ha construido para que funcione en las zonas de rupturas, recibe ese nombre por su inventor, el Dr. Clarence Melvin Zener. El diodo Zener es la parte esencial de los reguladores de tensión casi constantes con independencia de que se presenten grandes variaciones de la tensión de red, de la resistencia de carga y temperatura. El diodo Zener debe ser polarizado al revés para que adopte su característica de regulador de tensión.
FUNCIONAMIENTO
Si a un diodo Zener se le aplica una corriente eléctrica del ánodo al cátodo(polarización directa) toma las características de un diodo rectificador básico, pero si se le suministra corriente eléctrica de cátodo a ánodo (polarización inversa), el diodo solo dejara pasar un voltaje constante.
FUNCIONAMIENTO
Si a un diodo Zener se le aplica una corriente eléctrica del ánodo al cátodo(polarización directa) toma las características de un diodo rectificador básico, pero si se le suministra corriente eléctrica de cátodo a ánodo (polarización inversa), el diodo solo dejara pasar un voltaje constante.
DIODO LED (Light-Emitting Diode: diodo emisor de luz)
Es un componente opto electrónico pasivo, más concretamente, un diodo que emite luz.
Cuando un LED se encuentra en polarización directa, los electrones pueden recombinarse con los huecos en el dispositivo, liberando energía en forma de fotones. Este efecto es llamado electroluminiscencia y el color de la luz
SU CONSTRUCCIÓN:
Cuando un LED se encuentra en polarización directa, los electrones pueden recombinarse con los huecos en el dispositivo, liberando energía en forma de fotones. Este efecto es llamado electroluminiscencia y el color de la luz
SU CONSTRUCCIÓN:
A | Ánodo |
---|---|
B | Cátodo |
1 | Lente/encapsulado epóxico (capsula plastica) |
2 | Contacto metálico (hilo conductor) |
3 | Cavidad reflectora (copa reflectora) |
4 | Terminación del semiconductor |
5 | Yunque |
6 | Plaqueta |
7 | |
8 | Borde plano |
DIODO RECTIFICADOR
El nombre diodo rectificador” procede de su aplicación, la cual consiste en separar los ciclos positivos de una señal de corriente alterna.
Si se aplica al diodo una tensión de corriente alterna durante los medios ciclos positivos, se polariza en forma directa; de esta manera, permite el paso de la corriente eléctrica.
Pero durante los medios ciclos negativos, el diodo se polariza de manera inversa; con ello, evita el paso de la corriente en tal sentido.
Si se aplica al diodo una tensión de corriente alterna durante los medios ciclos positivos, se polariza en forma directa; de esta manera, permite el paso de la corriente eléctrica.
Pero durante los medios ciclos negativos, el diodo se polariza de manera inversa; con ello, evita el paso de la corriente en tal sentido.
QUE ES UN DIODO?
Un diodo es un componente electrónico de dos terminales que permite la circulación de la corriente eléctrica a través de él en un solo sentido. Este término generalmente se usa para referirse al diodo semiconductor, el más común en la actualidad; consta de una pieza de cristal semiconductor conectada a dos terminales eléctricos.
QUE ES UN TRANSFORMADOR?
Es dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo la potencia. La potencia que ingresa al equipo, en el caso de un transformador ideal (esto es, sin pérdidas), es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño y tamaño, entre otros factores.
Nos convierte la energía eléctrica alterna de un cierto nivel de tensión, en energía alterna de otro nivel de tensión, basándose en el fenómeno de la inducción electromagnética. Está constituido por dos o más bobinas de material conductor, devanadas sobre un núcleo cerrado de material ferromagnético, pero aisladas entre sí eléctricamente.
QUE ES CONSTANTE DE TIEMPO EN UN CIRCUITO "RC"
Un circuito RC es un circuito con un condensador y una resistencia, como muestra la figura. En un proceso de carga, cuando cerramos el interruptor S, el condensador no se carga instantáneamente, En un proceso de descarga, partiendo de un condensador cargado, al cerrar el interruptor, el condensador se descarga a través de la resistencia, disminuyendo la carga.
Al producto RC se le llama constante de tiempo del circuito t y equivale al tiempo que el condensador tardaría en descargarse de continuar en todo momento la intensidad inicial.
Al producto RC se le llama constante de tiempo del circuito t y equivale al tiempo que el condensador tardaría en descargarse de continuar en todo momento la intensidad inicial.
QUE ES EL CABLE UTP?
Es un medio de seguridad usado en telecomunicaciones en el que dos conductores eléctricos aislados son entrelazados para anular las interferencias de fuentes externas y diafonía de los cables opuestos.
consiste en dos alambres de cobre aislados que se trenzan de forma helicoidal, igual que una molécula de ADN. De esta forma el par trenzado constituye un circuito que puede transmitir datos. Esto se hace porque dos alambres paralelos constituyen una antena simple. Cuando se trenzan los alambres, las ondas de diferentes vueltas se cancelan, por lo que la radiación del cable es menos efectiva. Así la forma trenzada permite reducir la interferencia eléctrica tanto exterior como de pares cercanos. Un cable de par trenzado está formado por un grupo de pares trenzados, normalmente cuatro, recubiertos por un material aislante.
Está limitado en distancia, ancho de banda y tasa de datos. También destacar que la atenuación es una función fuertemente dependiente de la frecuencia.
Ventajas:
- Bajo costo en su contratación.
- Alto número de estaciones de trabajo por segmento.
- Facilidad para el rendimiento y la solución de problemas.
- Puede estar previamente cableado en un lugar o en cualquier parte.
Desventajas:
- Altas tasas de error a altas velocidades.
- Ancho de banda limitado.
- Baja inmunidad al ruido.
- Baja inmunidad al efecto crosstalk (diafonía)
- Alto costo de los equipos.
- Distancia limitada (100 metros por segmento).
sábado, 1 de junio de 2013
CAPACITORES
Es un dispositivo pasivo, utilizado en electricidad y electrónica, capaz de almacenar energía sustentando un campo eléctrico. Está formado por un par de superficies conductoras, generalmente en forma de láminas o placas, en situación de influencia total (esto es, que todas las líneas de campo eléctrico que parten de una van a parar a la otra) separadas por un material dieléctrico o por el vacío. Las placas, sometidas a una diferencia de potencial, adquieren una determinada carga eléctrica, positiva en una de ellas y negativa en la otra, siendo nula la variación de carga total.
La carga almacenada en una de las placas es proporcional a la diferencia de potencial entre esta placa y la otra, siendo la constante de proporcionalidad la llamada capacidad o capacitancia. En el Sistema internacional de unidades se mide en Faradios (F), siendo 1faradio la capacidad de un condensador en el que, sometidas sus armaduras a una d.d.p. de 1 voltio, estas adquieren una carga eléctrica de 1 culombio.
La capacidad de 1 faradio es mucho más grande que la de la mayoría de los condensadores, por lo que en la práctica se suele indicar la capacidad en micro- µF = 10-6, nano- nF = 10-9 o pico- pF = 10-12 -faradios.
- SUS SIMBOLOGIAS ELECTRONICA ES
CODIGO DE COLORES (resistores)
Color de la banda | Valor de la 1°cifra significativa | Valor de la 2°cifra significativa | Multiplicador | Tolerancia | Coeficiente de temperatura | |
Negro | 0 | 0 | 1 | - | - | |
Marrón | 1 | 1 | 10 | ±1% | 100ppm/°C | |
Rojo | 2 | 2 | 100 | ±2% | 50ppm/°C | |
Naranja | 3 | 3 | 1 000 | - | 15ppm/°C | |
Amarillo | 4 | 4 | 10 000 | ±4% | 25ppm/°C | |
Verde | 5 | 5 | 100 000 | ±0,5% | 20ppm/°C | |
Azul | 6 | 6 | 1 000 000 | ±0,25% | 10ppm/°C | |
Morado | 7 | 7 | 10000000 | ±0,1% | 5ppm/°C | |
Gris | 8 | 8 | 100000000 | ±0.05% | 1ppm/°C | |
Blanco | 9 | 9 | 1000000000 | - | - | |
Dorado | - | - | 0,1 | ±5% | - | |
Plateado | - | - | 0,01 | ±10% | - | |
Ninguno | - | - | - | ±20% | - |
valor de una resistencia
4 líneas de colores, aunque podemos encontrar algunas que contenga 5 líneas (4 de colores y 1 que indica tolerancia). Vamos a tomar como ejemplo la más general, las de 4 líneas. Leemos las primeras 3 y dejamos aparte la tolerancia que es plateada (±10%) o dorada (±5%).- La primera línea representa el dígito de las unidades.
- La segunda línea representa el dígito de las decenas.
- La tercera línea representa la potencia de 10 por la cual se multiplica el número.
Por ejemplo:- Registramos el valor de la primera línea (verde): 5
- Registramos el valor de la segunda línea (amarillo): 4
- Registramos el valor de la tercera línea (rojo): 102 o 100
- Unimos los valores de las primeras dos líneas y multiplicamos por el valor de la tercera
54 X 102 = 5400Ω o 5,4 kΩ y este es el valor de la resistencia expresada en Ohmios
RESISTENCIAS (resistor)
Se denomina resistor o bien resistencia al componente electrónico diseñado para introducir una resistencia eléctrica determinada entre dos puntos de un circuito. En el propio argot eléctrico y electrónico, son conocidos simplemente como resistencias. En otros casos, como en las planchas, calentadores, etc., se emplean resistencias para producir calor aprovechando el efecto Joule.
Para caracterizar un resistor hacen falta tres valores: resistencia eléctrica, disipación máxima y precisión o tolerancia. Estos valores se indican normalmente en el encapsulado dependiendo del tipo de éste; para el tipo de encapsulado axial, el que se observa en las fotografías, dichos valores van rotulados con un código de franjas de colores.
Estos valores se indican con un conjunto de rayas de colores sobre el cuerpo del elemento. Son tres, cuatro o cinco rayas; dejando la raya de tolerancia (normalmente plateada o dorada) a la derecha, se leen de izquierda a derecha. La última raya indica la tolerancia (precisión). De las restantes, la última es el multiplicador y las otras indican las cifras significativas del valor de la resistencia.
El valor de la resistencia eléctrica se obtiene leyendo las cifras como un número de una, dos o tres cifras; se multiplica por el multiplicador y se obtiene el resultado en Ohmios (Ω). El coeficiente de temperatura únicamente se aplica en resistencias de alta precisión o tolerancia menor del 1%.
QUE ES UN MULTIMETRO?
Es un instrumento eléctrico portátil para medir directamente magnitudes eléctricas activas como corrientes y potenciales (tensiones) o pasivas como resistencias, capacidades y otras. Las medidas pueden realizarse para corriente continua o alterna y en varios márgenes de medida cada una. Los hay analógicos y posteriormente se han introducido los digitales cuya función es la misma (con alguna variante añadida).
- Amperímetro es preciso conectar una resistencia en paralelo con el instrumento de medida . El valor de depende del valor en amperios que se quiera alcanzar cuando la aguja alcance el fondo de escala. En el multimetro aparecerán tantas resistencias conmutables como valores diferentes de fondos de escala se quieran tener.
- voltímetro es preciso conectar una resistencia en serie con el instrumento de medida. El valor de depende del valor en voltios que se quiera alcanzar cuando la aguja alcance el fondo de escala. En el polímetro aparecerán tantas resistencias conmutables como valores diferentes de fondos de escala se quieran tener.
- El óhmetro permite medir resistencias. Una pila interna hace circular una corriente a través de la resistencia a medir, el instrumento y una resistencia adicional de ajuste.
- Cuando los terminales de medida se ponen en cortocircuito circula la máxima corriente por el galvanómetro. Es el valor de corriente que se asocia a R = 0. Con la resistencia de ajuste se retoca esa corriente hasta que coincida con el fondo de escala y en la división que indica la corriente máxima se pone el valor de 0 ohmios.
CONEXIONES ELECTRICAS
- sistema trifásico es un sistema de producción, distribución y consumo de energía eléctrica formado por tres corrientes alternas monofásicas de igual frecuencia y amplitud (y por consiguiente, valor eficaz) que presentan una cierta diferencia de fase entre ellas, en torno a 120°, y están dadas en un orden determinado. Cada una de las corrientes monofásicas que forman el sistema se designa con el nombre de fase.
- sistema monofásico es un sistema de producción, distribución y consumo de energía eléctrica formado por una única corriente alterna o fase y por lo tanto todo el voltaje varía de la misma forma. La distribución monofásica de la electricidad se suele usar cuando las cargas son principalmente de iluminación y de calefacción, y para pequeños motores eléctricos.
- sistema bifásico es un sistema de producción y distribución de energía eléctrica basado en dos tensiones eléctricas alternas desfasadas en su frecuencia 90º. En un generador bifásico, el sistema está equilibrado y simétrico cuando la suma vectorial de las tensiones es nula (punto neutro)
Suscribirse a:
Entradas (Atom)